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Abstract

Phosphors applied in agricultural light-emitting diodes (LEDs) for plant growth are designed to
convert electrical energy into light within the Photosynthetically Active Radiation (PAR) range,
covering wavelengths from 400 to 700 nm. For that purpose, a series of SroLai.<Eu.F7 (x =0, 0.05,
0.1, 0.15, 0.2, 0.4, 0.5, 0.6, 0.8) luminescent nanopowders were prepared. Transmission electron
microscopy shows nanoparticles of ~33 nm size. The SroLaF; sample band gap of 8.8 eV was
determined using the reflected electron energy loss spectroscopy method. Photoluminescence
measurements show highly efficient red and deep-red emission, with the optimal concentration of
50 mol% of Eu**, that exhibits a remarkable 555% emission enhancement compared to 5 mol% of
Eu**. The most prominent emission peaks are around 600 nm (orange/red) and 700 nm (deep-red).
The observed lifetimes are long, they gradually decrease with the Eu concentration increase, from
14.9 ms for x = 0.05 to 8.3 ms for x = 0.8. Temperature-dependent luminescence spectra to 200°C
indicate that the optimal sample exhibits outstanding thermal stability, with emission intensity
retaining 97% of its room-temperature value. The quantum efficiency of the optimized sample is
52.73%. The high emission efficiency, wide band gap, good thermal stability and unusual dominant
700 nm deep-red emission make these samples promising nanophosphors for LED-based indoor

plant growth.
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1. Introduction

Phosphor materials absorb energy and subsequently re-emit it through the process of luminescence
as visible light or in other spectral regions such as ultraviolet or infrared. Lanthanide-based
phosphors, renowned for their distinctive physical and chemical properties and wide spectral
versatility, are vital components in optoelectronics, lighting, and display technologies. To ensure
optimal performance, these phosphors require host matrices that are non-hygroscopic to maintain
stability in air and aqueous environments, exhibit low phonon frequencies to minimize non-
radiative energy losses, and possess wide band gaps that facilitate efficient dopant transitions while
reducing self-absorption effects. Over the past two decades, fluoride compounds have emerged as
great candidates for phosphor hosts because of their low phonon energies (300-500 cm™!), high
optical transmittance and outstanding chemical stability, which is favorable for enhancing radiative
transitions and improving quantum efficiency of phosphors [1,2]. By far, the most widely
investigated fluoride hosts belong to the family of alkaline-lanthanide-tetrafluorides — ALnF4
(A=Na, K, Li; Ln*=Y, La, Gd, Lu) [3—16]. On the other hand, literature reports on alkali-earth-
lanthanide based fluorides — M>LnF7 (M=Ca, Sr, Ba; Ln**=Y, La, Gd, Lu) — are scarce and mostly
limited to up-conversion phenomenon and related applications of photothermal therapy,
anticounterfeiting and bio imaging [17—21]. Only a limited number of published studies propose
using phosphors from this family of compounds for light-emitting diode (LED) applications [22—
26]. SrLaF7 has been mostly utilized as a matrix for up-converting ions and applications in
photocatalysis [27], optical thermometry [28], fingerprint detection [29], fluorescent labels in near-

IR range [30]. To the best of our knowledge, there is only one reported study on SroLaF7:Eu®*,
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with doping content up to 30 mol%, obtained by co-precipitation. This powder exhibits red
emission with concentration quenching at 20 mol% of Eu®" and lifetimes in ~(4-8) ms range [31].
In modern agriculture, efficient LED lighting is extensively studied for optimizing indoor plant
growth. The aim is to maximize electrical energy conversion into Photosynthetically Active
Radiation (PAR, 400-700 nm), the spectral part that promotes photosynthesis in plants.
Furthermore, recent research also highlights the benefits of deep-red light (700—750 nm), which
can elevate photochemical efficiency [32] and improve crop flavor by reducing bitterness in leafy
greens like lettuce and spinach. Thus, LED systems combining PAR-aligned and deep-red
wavelengths are key to advancing sustainable indoor-based crop production.

In this research, we synthesized SroLaF; powders with different contents of Eu*" ions (up to
80 mol%), using a hydrothermal procedure, and proved it has bright red and deep-red emission
with long lifetimes of up to ~15 ms. Incorporation of the most optimal nanophosphor onto a
395nm LED chip showed intense emission indicating great potential for horticulture LED

systems.

2. Experimental

The set of Sr.LaF7 nanophosphors doped with various concentrations of Eu** ions (0, 5, 10, 15,
20, 40, 50, 60, and 80 mol%) was synthesized using the hydrothermal procedure. The starting
precursors were strontium nitrate (Sr(NO3)2, Thermo Scientific, 99% min), lanthanum (III) nitrate
hexahydrate (La(NOs;)3-6H,O, Alfa Aesar, 99.9%), europium (III) nitrate hexahydrate
(Eu(NO3)3-6H20, Alfa Aesar, 99.9%), disodium ethylendiaminetetraacetate dihydrate (EDTA-

2Na, C10H14N20sNa-2H>0, Kemika, 99%) and ammonium fluoride (NH4F, Alfa Aesar, 98%). The
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detailed synthesis description and the procedure scheme were given in [26]. In short, precursors
were dissolved in de-ionized water and mixed, afterwards the pH was regulated at about 6 using
25 % ammonium hydroxide solution. A hydrothermal reaction took place in a 100-mL Teflon-lined
autoclave at 180°C for 20 hours. After cooling, the precipitates were collected by centrifugation,
washed twice with deionized water, and once with a 1:1 ethanol-water solution. Finally, the
samples were dried in air at 70°C for 4 hours. The exact amounts of precursors needed for
preparation of each sample are given in Table 1. Although the doping content of Eu** reaches
80 mol%, the phosphor host is designated as SrLaF; (abbreviated name SLF) for the sake of

clarity.

Table 1. Precursor quantities required for the synthesis of 0.0025 mol of Sr;La;.Eu.F; (x =0, 0.05, 0.1,

0.15,0.2,0.4,0.5, 0.6, 0.8).

Precursor mass [g]
Molecular x [mol% Abbreviated

La(N03)3 . Eu(N03)3 .

formula Eu’'] name Sr(NOs)2 NH4F EDTA-2Na
6H,0 6H,O

Sr,LaF; 0 SLF 1.0825 -

SroLag.9sEuo.0sF7 5 SLF 5Eu 1.0284 0.0558

SraLag 9Eug.1F7 10 SLF 10Eu 0.9743 0.1115

SroLag.gsEuo.15F7 15 SLF 15Eu 0.9201 0.1673

SraLag sEug 2F7 20 SLF 20Eu 1.0582 0.8860 0.2230 1.1111 0.9306
SroLagsEuo4F7 40 SLF 40Eu 0.6495 0.4461

SraLag sEuo sF7 50 SLF 50Eu 0.5413 0.5576

SroLag 4Euo6F7 60 SLF 60Eu 0.4330 0.6691

SroLag2EuosF7 80 SLF_80Eu 0.2165 0.8921
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The X-ray diffraction analysis was conducted using a Rigaku SmartLab system with Cu Ka
radiation at 30 mA and 40 kV, confirming the phase purity and crystallinity of the samples.
Diffraction data were collected in the 20 range of 10° to 90° with a step size of 0.02° and a counting
time of 1°/min, while the structural analysis was performed using the integrated PDXL2 package
software. A three-dimensional scheme of crystal structure was built via Diamond 4.6.8 software.
The transmission electron microscope JEOL JEMI1011 was used to examine nanopowders
microstructure, operating at an accelerating voltage of 100 kV. The average particle size was
determined based on size measurement of more than 130 particles, with the help of Imagel
software.

The bandgap of non-doped SroLaF7 in the pellet form was evaluated by reflected electron energy
loss spectroscopy (REELS) measurement. It was carried out using a Thermo Fisher ESCALAB
Xi+ instrument, using the electron source energy of 1000 eV, detector pass energy of 10 eV and a
step size of 0.02 eV.

Photoluminescent emission and excitation spectra were recorded at room temperature using a
Fluorolog-3 Model FL3-221 spectrofluorometer system (Horiba JobinYvon). In a steady-state
measurement regime the system was equipped with a 450 W Xenon lamp and TBX detector, while
a xenon—mercury pulsed lamp was utilized for emission decay measurements. Excitation spectra
were recorded at the fixed emission wavelength of 591 nm and emission spectra were observed
upon a 393 nm excitation. The luminescence quantum efficiency was measured using an FLS1000
Fluorescence Spectrometer (Edinburgh Instruments), equipped with a 450 W xenon lamp and an
R928 photomultiplier tube (Hamamatsu), coupled with an integrating sphere. The temperature
stability of the photoluminescent emission was evaluated over the temperature range of 25-200°C

using an OceanOptics spectrofluorometric system with excitation at 365 nm (OceanOptics LED,
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L365A), combined with a MicroOptik heating stage. A 395 nm LED chip, delivering 100 mW of
optical power, was used to excite a mixture of luminescent powder and a transparent high-
temperature inorganic binder (Cerambind 643-2 from Aremco). The emission spectrum of the as-

prepared LED device was recorded using the OceanOptics spectrofluorometric system.

3. Results and discussion

3.1. Structure, morphology and band gap analysis

The XRD patterns of the synthesized SLF xEu (x =0, 5, 10, 15, 20, 40, 50, 60, 80 mol%)
nanopowders exhibit characteristic peaks that coincide well with the ICDD 01-083-3680 data, as
shown in Fig. 1(a). All the samples belong to the cubic Fm3m symmetry space group [31,33],
demonstrating that continuous exchange of La*" with Eu** does not transform the structural type
of the compound. This justifies the designation of SroLaF; compound as the phosphor host. The
schematic view of this structural type is displayed in Fig. 1(b), where Sr** and La*" cations both
occupy octahedral Wyckoff sites 4a with m-3m symmetry, while F~ ions reside in tetrahedrally-
coordinated Wyckoff sites 8c with —43m symmetry. The ionic radius of doping Eu*" ion is slightly
smaller than the radius of the host’s La®>" ion (La*"yu = 1.160A, Eu*" iy = 1.066A) [34], and we
systematically decreased the La*" content with increasing Eu®* concentration during the synthesis
(refer to Table 7). Therefore, it is presumable that Eu®* ions exchange La** ions when incorporating
into Sr,LaF; matrix. This assumption is supported by the shifting of diffraction peaks to higher
Bragg angles, observable in Fig. 1(c). As well as this, the calculated unit cell parameters, presented
in Table 2, exhibit a decreasing trend with the Eu** content increase, demonstrating successful

doping. The crystallite size calculated from XRD data is around 20 nm for all samples.
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Transmission electron micrographs of the representative SLF 50Eu powder, taken with different
magnifications, are displayed in Fig. I(d). The microstructure reveals porous, loosely packed
agglomerates consisting of nanoparticles with quasi-spherical shapes, a morphology characteristic
of fluoride-based nanophosphors obtained through wet-chemical synthesis methods [35]. The
particle size histogram fitted with a log-normal distribution, based on more than 130 measured
particles, is presented in Fig. I(e)). The particles exhibit a size distribution in 20-80 nm range, with
the average particle size estimated to be 33+2 nm. Considering the crystallite size from Table 2,
we can say that each particle is composed of a few crystallites.

The reflected electron energy loss (REELS) spectrum of the non-doped SLF nanopowder is shown
in Fig. I1(f). By plotting the electron energy loss spectrum and identifying the onset of inelastic
scattering — where intensity begins to rise from the zero-loss peak — the electronic band gap is
extracted. In this analysis, that onset corresponds to an energy of 8.8 eV. In the present approach,
the background intensity was not explicitly subtracted; instead, the signal onset was estimated from
the visible rise above the background slope. Since the tail of the zero-loss peak and the scattering
background affect the pre-edge region, this procedure inherently introduces some uncertainty in
the determination of the band gap value. Based on repeated measurements and the possible
variation in the fitted onset position, we estimated that the uncertainty associated with this method
does not exceed 0.2 eV. Large bang gap is favorable for phosphor materials in terms of preventing
non-radiative losses, supporting efficient dopant emission and improving thermal and chemical

stability.
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Fig. 1 (a) The XRD patterns of the Sr.LaF; nanophosphors doped with various concentrations of Eu** ions
(5, 10, 15, 20, 40, 50, 60, and 80 mol%), dotted line marking the diffraction peaks from (1 1 1) and (2 0 0)
planes; (b) three-dimensional schematic presentation of the cubic Sr»LaF7 structure; (c) diffraction data in

the 26 range of (25-32)°, noting the Bragg angle shift of the (1 1 1) and (2 0 0) peaks; (d) TEM images of

the representative SLF_50Eu nanophosphor under different magnifications; (e) particle size distribution
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fitted with lognormal peak function and formulas used for particle size calculation; (f) reflected electron

energy loss spectrum of the SLF nanopowder. The blue line represents the band gap energy.

Table 2 Structural parameters of the SLF _xEu (x =0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) nanophosphors.

X

[mol%]

a=b=c 5.8401(1

5.8369(3) 5.8416(6) 5.8355(6) 5.8313(7) 5.8166(5) 5.8048(6) 5.7983(10) 5.7792(13)
(A) 5)
CS (nm) 23.1(1) 23.9(7) 22.0(8) 24.8(3) 20.0(3) 21.9(2) 16.6(1) 21.7(4) 22.4(4)

Strain 0.156(3)  0.209(9) 0.205(13) 0.260(3) 0.210(2) 0.360(3) 0.26(3)  0.390(3)  0.420 (3)

Rwp 10.08 9.74 10.52 9.21 9.42 8.82 9.04% 7.56% 8.19%
Rp 7.76 7.51 8.19 7.21 7.34 6.98 7.29% 6.07% 6.41%
Re 9.37 9.20 9.54 8.52 8.88 8.27 7.57% 7.45% 7.13%
GOF 1.0750 1.0579 1.1015 1.0809 1.0603 1.0661 1.1939 1.0146 1.1493

Rwp—the weighted profile factor; Ry—the profile factor; Re—the expected weighted profile factor; GOF—the goodness of fit.

3.2. Photoluminescence

The photoluminescence excitation spectrum of the SLF SEu sample, recorded by monitoring
emission at 591 nm, is presented in Fig. 2(a). It exhibits the trivalent europium intra-4f electronic
transitions, that are noted in Fig. 2(a) according to literature [31].

Fig. 2(b) reveals the emission spectra of the SLF_xEu (x =0, 5, 10, 15, 20, 40, 50, 60, 80 mol%)
nanopowders, obtained after a 393 nm excitation. In the wavelength region 500-575 nm, the

transitions from the higher excited levels of Eu*" are detected (inset in Fig. 2(a)). Dejneka et al.[36]
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reported that in fluoride hosts emissions from °D1, °D», and °D; levels can be observed, although
their intensity is typically more than order of magnitude less intense than the Dy emissions at
room temperature. Our results are consistent with this, showing emissions at 510, 526, 535 and
554 nm, that correspond to °D>— 'F3, °D; — "Fo, °D; — ’Fi, and °D; — ’F» transitions,
respectively. However, their intensity is quenched at higher Eu** concentrations and become
negligible at concentrations above 20 mol%. Apart from the higher energy emissions, the typical
Eu** emission transitions around 591 nm (°Do — ’F1), 613 nm (°Do — "F2), 649 nm (°Do — "F3)
and 698 nm (°Dy — ’F4 transition) are observed [31,37]. The most intense Dy — 'F; transition of
a magnetic-dipole nature dominates the spectrum, as can be expected for cubic hosts with the
activator ion located in centrosymmetric site. The *Do — F> transition is a forced electric-dipole
transition that is highly sensitive to changes in the local environment surrounding the Eu*" ions.
All samples show an unusually intense Do — ’F4 emission peak near 700 nm, providing a
beneficial spectral component that aligns with the deep-red region of the PAR spectrum [38].

Fig. 2(c) unveils the emission intensity—Eu®* concentration dependence, from which is evident that
the maximal intensity is reached at x = 50 mol%, after which the concentration quenching occurs.
The SLF_50Eu sample exhibits a remarkable enhancement in emission intensity, reaching 555%
relative to the sample with 5 mol% Eu**. Even at a high doping level of 80 mol%, the emission
remains significantly enhanced, showing an intensity 370% greater than that of the lowest-doped
sample.

As Dexter and Schulman theory predicts, concentration quenching in inorganic phosphors occurs
when energy is transferred from one activator ion to another, typically continuing this process until
the energy is ultimately lost to a non-radiative sink within the lattice [39]. The mechanism of

concentration quenching can be anticipated by determining the critical distance for energy transfer
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between ions, denoted as R.-. The average interaction distance between ions can be approximately

calculated using the following equation by Blasse [40]:

. 6V \/3 .
¢~ (anC> ' (1)

R

In this expression V [A3] represents unit cell volume, N stands for the number of lattice sites per
unit cell that can be occupied by activator ions, while x. is the critical concentration of activator
ions, after which the quenching occurs. In our case, x; = 0.5, for Fm3m fluorite-type structure
N = 4, and from XRD data we calculated V = 195.6 A3. If R, >5 A, the multipolar interaction
determines concentration quenching, otherwise, the exchange interaction is responsible for it [39].
From Equation (1) we calculated R = 5.72 A, so we can conclude that in the case of the SLF_xEu
sample series the concentration quenching results from the multipolar interaction. The type of

multipolar interaction can be analyzed further using the Van-Uitert equation [41]:

I(x—x)zl{-[1+,8-x%]_1, @)

where x stands for doping concentration, and x = x.; I(x) is the emission intensity for the given
concentration, while K and f represent constants. In the case of multipolar interactions, the energy
transfer probability is proportional to R™2, where Q = 6, 8 or 10, corresponds to dipole—dipole,

dipole—quadrupole, and quadrupole—quadrupole interactions, respectively. With the approximation

Q
p - x3 > 1, and by linearizing the Eq.(2), the following relation is obtained:

920z Aenuga4 z| uo 1sanb Aq 9192/ 18/9z0be1d/da1d/e601 0L /10p/alo1le-aoueape/dayd/wod-dno-olwapede//:sdijy woly papeojumoq



I(x
log [% = logK; — %logx, K, =K-p™1. 3)

The inset in Fig. 2(c) displays the function log(I/x) —log x, for x > x.. The parameter Q was
calculated from the slope of the linear fit. In this case, @ = 5.4 + 0.87, which is closest to the
theoretical value of 6, indicating that dipole-dipole interactions are the dominant mechanism
responsible for concentration quenching in the SLF _xEu sample set.

Normalized time decay curves of the SLF xEu nanopowders are depicted in Fig. 2(d). The decay
profiles were evaluated by applying a single-exponential fitting to the experimental data, thereby

determining the corresponding lifetimes () according to equation:

1) = Ioe ™, @

where I(t) represents the emission intensity at time t, I, is the corresponding emission intensity
at time t = 0 (ideally, I, = 1 for normalized intensity), while 7 represents the excited state
lifetime. All the excited Dy state lifetimes are very long and decrease within (14.9-8.3) ms range
as the Eu®" content increases (see inset in Fig. 2(d)). Compared to previously published research
on Eu**-activated Sr.LaF7 nanophosphors [31], our measured lifetime values are approximately
twice as high, aligning closely with those observed in similar fluoride-based matrices [26].

The optimized SLF 50Eu sample exhibits a quantum efficiency of 52.73%, indicating efficient
radiative emission. This value is regarded as substantial, particularly for Eu**-doped fluoride hosts

[42—-44], given that red-emitting Eu®" transitions often experience non-radiative relaxation
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pathways. This result highlights the excellent luminescent performance and favorable energy

transfer dynamics within the SLF host lattice.
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Fig. 2 (a) The excitation spectrum of SLF_5Eu, recorded under a 591 nm emission; (b) the emission spectra

of SLF xEu (x =0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) nanophosphors. The inset shows 500-575 nm

spectral range. (c) The intensity-concentration dependence of the SLF xEu nanopowders. The inset:

log(1/x) vs. logx plot, for x = x;. The measurement uncertainty is comparable to, or smaller than the

symbol size. (d) The excited state decay curves for different Eu*" concentrations. The inset: lifetime values

vs. Eu** concentration.
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3.3. CIE coordinates, emission stability and LED fabrication

For horticultural LED applications, selecting the appropriate light color and ensuring the thermal
stability of photoluminescence emission are critical requirements.

To evaluate the color characteristics of the synthesized nanophosphors, the CIE chromaticity
coordinates were calculated from the emission spectra shown in Fig. 2(b). The CIE (Commission
Internationale de 1'Eclairage) 1931 chromaticity diagram provides a standardized method for
representing and describing colors using the (X, y) coordinates, which indicate the chromaticity of
a light source independent of its brightness. Additionally, the color purity of the emitted light was
evaluated to assess the degree of color saturation, where a higher purity value indicates a more
vivid and saturated color. Table 3 features the colorimetric parameters of the examined
nanopowders, derived from the corresponding emission spectra, while Fig. 3(a) illustrates the
position in the CIE diagram. The (X, y) chromaticity coordinates of all samples fall within the red
region of the diagram, showing a gradual shift from orange-red to deep red as the Eu*
concentration increases. The color purity is exceptional, reaching 100% pure color after

x =20 mol%.

Table 3 Colorimetric parameters of SLF _xEu (x =5, 10, 15, 20, 40, 50, 60, 80 mol%) nanophosphors

X [mol%] 5 10 15 20 40 50 60 80
X 0.550 0.576 0.594 0.599 0.604 0.607 0.607 0.607
y 0.441 0.419 0.404 0.400 0.395 0.392 0.393 0.392
Color
92.44 98.32 98.95 99.67 100 100 100 100

purity[%]
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To assess the thermal stability of nanophosphors, steady-state temperature-dependent emission
measurements were performed over the range of 25°C to 200°C, in 25°C increments, using the
SLF 50Eu sample pressed into a pellet. While some LED manufacturers consider 100°C as the
typical maximum operating temperature for LEDs [45,46], literature reports often indicate
temperature stability up to 150°C [47,48]. As shown in Fig. 3(a), the SLF_50Eu sample exhibits
remarkable thermal stability, retaining almost 100% of its room-temperature integrated emission
intensity up to 100°C and still maintaining 97% of its initial emission intensity at 200°C. Moreover,

the inset in Fig. 3(b) demonstrates considerable temporal stability of this nanophosphor.
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Fig. 3 (a) Position in the CIE color diagram of the SLF_xEu (x =0, 5, 10, 15, 20, 40, 50, 60, 80 mol%)
nanophosphors. The inset: synthesized nanopowders under an UV lamp lighting; (b) Thermal stability of
photoluminescence emission of the SLF 50Eu sample. The inset shows temporal stability of the integrated

emission intensity.

To evaluate the practical applicability of the phosphors in LED technology, the powder sample

with the highest emission intensity, SLF 50Eu, was combined with a ceramic binder and coated
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onto a 395 nm near-UV LED chip. As shown in Fig. 4(a) , the fabricated LED device emits a strong
red light when powered. The corresponding emission spectrum, presented in Fig. 4(b) clearly
displays the characteristic europium emission transitions in the red and deep-red spectral regions.
The dashed line in Fig. 4(b) corresponds to the emission spectrum of the 395 nm chip. The two
peaks observed near 400 nm arise from the chip’s emission and the Eu*" absorption transition
"Fo — %L at 393 nm (see excitation spectrum in Fig. 2(a)). The strong overlap between these
transitions enables efficient energy absorption by Eu®" ions, producing the characteristic doublet

around 400 nm.
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Fig. 4 (a) LED device, fabricated from a SLF_50Eu nanophosphor with a binder on a 395 nm-emitting
semiconductor chip, displaying strong red light; (b) the emission spectrum of the as-prepared LED device.
The dashed line represents the emission spectrum of a 395 nm chip. The dip at 393 nm corresponds to the

"Fo — L absorption transition of Eu*".
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4. Conclusion

In this research, a series of SroLaF7 nanoparticles was synthesized via hydrothermal method and
doped with various concentrations of Eu** ions. We conducted a comprehensive analysis of their
structural, morphological and photoluminescent properties, and demonstrated:
e The SroLaF7 host material possesses a wide band gap of 8.8 eV, well-suited for activation
with different lanthanide ions.
e The emission spectra upon a 393 nm excitation reveal intense orange/red and deep-red
emission of Eu’".
e The most dominant Dy — ’F; transition typical for centrosymmetric environments is
accompanied by an unusually intense *Do — "F4 transition.
e The emission intensity increases with increasing Eu®" concentration, peaking at
x = 50 mol%, beyond which concentration quenching is observed—attributed to a dipole—
dipole interaction mechanism.
e The excited-state lifetimes decrease from ~15 ms for x =5 to ~8 ms for x = 80 mol%.
e The optimized SLF _50Eu sample exhibits a remarkable 555% enhancement in integrated
emission intensity compared to the lowest concentration, while even at 80 mol% of Eu®*,
the emission remains enhanced by 370%.
e The quantum efficiency of the optimized sample is 52.73%.
e The nanophosphors demonstrate excellent thermal stability, retaining 100% of their room-

temperature emission at 100°C and 97% at 200°C.
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These findings confirm the potential of Sr.LaF7:Eu®" nanophosphors as efficient red-emitting
materials for LED-based applications, particularly in indoor plant growth lighting. Future work

will focus on evaluating their performance in integrated LED systems for plant growth lighting.
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