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T Abstract 

Phosphors applied in agricultural light-emitting diodes (LEDs) for plant growth are designed to 

convert electrical energy into light within the Photosynthetically Active Radiation (PAR) range, 

covering wavelengths from 400 to 700 nm. For that purpose, a series of Sr2La1-xEuxF7 (𝑥 = 0, 0.05, 

0.1, 0.15, 0.2, 0.4, 0.5, 0.6, 0.8) luminescent nanopowders were prepared. Transmission electron 

microscopy shows nanoparticles of ~33 nm size. The Sr2LaF7 sample band gap of 8.8 eV was 

determined using the reflected electron energy loss spectroscopy method. Photoluminescence 

measurements show highly efficient red and deep-red emission, with the optimal concentration of 

50 mol% of Eu3+, that exhibits a remarkable 555% emission enhancement compared to 5 mol% of 

Eu3+. The most prominent emission peaks are around 600 nm (orange/red) and 700 nm (deep-red). 

The observed lifetimes are long, they gradually decrease with the Eu concentration increase, from 

14.9 ms for 𝑥 = 0.05 to 8.3 ms for 𝑥 = 0.8. Temperature-dependent luminescence spectra to 200°C 

indicate that the optimal sample exhibits outstanding thermal stability, with emission intensity 

retaining 97% of its room-temperature value. The quantum efficiency of the optimized sample is 

52.73%. The high emission efficiency, wide band gap, good thermal stability and unusual dominant 

700 nm deep-red emission make these samples promising nanophosphors for LED-based indoor 

plant growth. 

 

Keywords: Phosphors; Eu3+; Sr2LaF7; deep red emission 
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1. Introduction 

 

Phosphor materials absorb energy and subsequently re-emit it through the process of luminescence 

as visible light or in other spectral regions such as ultraviolet or infrared. Lanthanide-based 

phosphors, renowned for their distinctive physical and chemical properties and wide spectral 

versatility, are vital components in optoelectronics, lighting, and display technologies. To ensure 

optimal performance, these phosphors require host matrices that are non-hygroscopic to maintain 

stability in air and aqueous environments, exhibit low phonon frequencies to minimize non-

radiative energy losses, and possess wide band gaps that facilitate efficient dopant transitions while 

reducing self-absorption effects. Over the past two decades, fluoride compounds have emerged as 

great candidates for phosphor hosts because of their low phonon energies (300-500 cm−1), high 

optical transmittance and outstanding chemical stability, which is favorable for enhancing radiative 

transitions and improving quantum efficiency of phosphors [1,2]. By far, the most widely 

investigated fluoride hosts belong to the family of alkaline-lanthanide-tetrafluorides − ALnF4 

(A=Na, K, Li; Ln3+=Y, La, Gd, Lu) [3–16]. On the other hand, literature reports on alkali-earth-

lanthanide based fluorides − M2LnF7 (M=Ca, Sr, Ba; Ln3+=Y, La, Gd, Lu) – are scarce and mostly 

limited to up-conversion phenomenon and related applications of photothermal therapy, 

anticounterfeiting and bio imaging [17–21]. Only a limited number of published studies propose 

using phosphors from this family of compounds for light-emitting diode (LED) applications [22–

26]. Sr2LaF7 has been mostly utilized as a matrix for up-converting ions and applications in 

photocatalysis [27], optical thermometry [28], fingerprint detection [29], fluorescent labels in near-

IR range [30]. To the best of our knowledge, there is only one reported study on Sr2LaF7:Eu3+, 
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emission with concentration quenching at 20 mol% of Eu3+ and lifetimes in ~(4-8) ms range [31]. 

In modern agriculture, efficient LED lighting is extensively studied for optimizing indoor plant 

growth. The aim is to maximize electrical energy conversion into Photosynthetically Active 

Radiation (PAR, 400–700 nm), the spectral part that promotes photosynthesis in plants. 

Furthermore, recent research also highlights the benefits of deep-red light (700–750 nm), which 

can elevate photochemical efficiency [32] and improve crop flavor by reducing bitterness in leafy 

greens like lettuce and spinach. Thus, LED systems combining PAR-aligned and deep-red 

wavelengths are key to advancing sustainable indoor-based crop production. 

In this research, we synthesized Sr2LaF7 powders with different contents of Eu3+ ions (up to 

80 mol%), using a hydrothermal procedure, and proved it has bright red and deep-red emission 

with long lifetimes of up to ~15 ms. Incorporation of the most optimal nanophosphor onto a 

395 nm LED chip showed intense emission indicating great potential for horticulture LED 

systems. 

 

2. Experimental 

 

The set of Sr2LaF7 nanophosphors doped with various concentrations of Eu3+ ions (0, 5, 10, 15, 

20, 40, 50, 60, and 80 mol%) was synthesized using the hydrothermal procedure. The starting 

precursors were strontium nitrate (Sr(NO3)2, Thermo Scientific, 99% min), lanthanum (III) nitrate 

hexahydrate (La(NO3)3⋅6H2O, Alfa Aesar, 99.9%), europium (III) nitrate hexahydrate 

(Eu(NO3)3⋅6H2O, Alfa Aesar, 99.9%), disodium ethylendiaminetetraacetate dihydrate (EDTA-

2Na, C10H14N2O8Na2∙2H2O, Kemika, 99%) and ammonium fluoride (NH4F, Alfa Aesar, 98%). The 
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were dissolved in de-ionized water and mixed, afterwards the pH was regulated at about 6 using 

25 % ammonium hydroxide solution. A hydrothermal reaction took place in a 100-mL Teflon-lined 

autoclave at 180°C for 20 hours. After cooling, the precipitates were collected by centrifugation, 

washed twice with deionized water, and once with a 1:1 ethanol-water solution. Finally, the 

samples were dried in air at 70°C for 4 hours. The exact amounts of precursors needed for 

preparation of each sample are given in Table 1. Although the doping content of Eu3+ reaches 

80 mol%, the phosphor host is designated as Sr2LaF7 (abbreviated name SLF) for the sake of 

clarity. 

 

Table 1. Precursor quantities required for the synthesis of 0.0025 mol of Sr2La1-xEuxF7 (𝑥 = 0, 0.05, 0.1, 

0.15, 0.2, 0.4, 0.5, 0.6, 0.8). 

Molecular 

formula 

𝒙 [mol% 

Eu3+] 

Abbreviated 

name 

Precursor mass [g] 

Sr(NO3)2 

La(NO3)3ꞏ 

6H2O 

Eu(NO3)3ꞏ 

6H2O 

NH4F EDTA-2Na 

Sr2LaF7 0 SLF 

1.0582 

1.0825 - 

1.1111 0.9306 

Sr2La0.95Eu0.05F7 5 SLF_5Eu 1.0284 0.0558 

Sr2La0.9Eu0.1F7 10 SLF_10Eu 0.9743 0.1115 

Sr2La0.85Eu0.15F7 15 SLF_15Eu 0.9201 0.1673 

Sr2La0.8Eu0.2F7 20 SLF_20Eu 0.8860 0.2230 

Sr2La0.6Eu0.4F7 40 SLF_40Eu 0.6495 0.4461 

Sr2La0.5Eu0.5F7 50 SLF_50Eu 0.5413 0.5576 

Sr2La0.4Eu0.6F7 60 SLF_60Eu 0.4330 0.6691 

Sr2La0.2Eu0.8F7 80 SLF_80Eu 0.2165 0.8921 
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radiation at 30 mA and 40 kV, confirming the phase purity and crystallinity of the samples. 

Diffraction data were collected in the 2θ range of 10° to 90° with a step size of 0.02° and a counting 

time of 1°/min, while the structural analysis was performed using the integrated PDXL2 package 

software. A three-dimensional scheme of crystal structure was built via Diamond 4.6.8 software. 

The transmission electron microscope JEOL JEM1011 was used to examine nanopowders 

microstructure, operating at an accelerating voltage of 100 kV. The average particle size was 

determined based on size measurement of more than 130 particles, with the help of ImageJ 

software. 

The bandgap of non-doped Sr2LaF7 in the pellet form was evaluated by reflected electron energy 

loss spectroscopy (REELS) measurement. It was carried out using a Thermo Fisher ESCALAB 

Xi+ instrument, using the electron source energy of 1000 eV, detector pass energy of 10 eV and a 

step size of 0.02 eV.  

Photoluminescent emission and excitation spectra were recorded at room temperature using a 

Fluorolog-3 Model FL3-221 spectrofluorometer system (Horiba JobinYvon). In a steady-state 

measurement regime the system was equipped with a 450 W Xenon lamp and TBX detector, while 

a xenon–mercury pulsed lamp was utilized for emission decay measurements. Excitation spectra 

were recorded at the fixed emission wavelength of 591 nm and emission spectra were observed 

upon a 393 nm excitation. The luminescence quantum efficiency was measured using an FLS1000 

Fluorescence Spectrometer (Edinburgh Instruments), equipped with a 450 W xenon lamp and an 

R928 photomultiplier tube (Hamamatsu), coupled with an integrating sphere. The temperature 

stability of the photoluminescent emission was evaluated over the temperature range of 25–200°C 

using an OceanOptics spectrofluorometric system with excitation at 365 nm (OceanOptics LED, 
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optical power, was used to excite a mixture of luminescent powder and a transparent high-

temperature inorganic binder (Cerambind 643-2 from Aremco). The emission spectrum of the as-

prepared LED device was recorded using the OceanOptics spectrofluorometric system. 

 

3. Results and discussion 

3.1. Structure, morphology and band gap analysis 

 

The XRD patterns of the synthesized SLF_𝑥Eu (𝑥 = 0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) 

nanopowders exhibit characteristic peaks that coincide well with the ICDD 01-083-3680 data, as 

shown in Fig. 1(a). All the samples belong to the cubic Fm3തm symmetry space group [31,33], 

demonstrating that continuous exchange of La3+ with Eu3+ does not transform the structural type 

of the compound. This justifies the designation of Sr2LaF7 compound as the phosphor host. The 

schematic view of this structural type is displayed in Fig. 1(b), where Sr2+ and La3+ cations both 

occupy octahedral Wyckoff sites 4a with m-3m symmetry, while F- ions reside in tetrahedrally-

coordinated Wyckoff sites 8c with −43m symmetry. The ionic radius of doping Eu3+ ion is slightly 

smaller than the radius of the host’s La3+ ion (La3+
VIII = 1.160Å, Eu3+

VIII = 1.066Å) [34], and we 

systematically decreased the La3+ content with increasing Eu3+ concentration during the synthesis 

(refer to Table 1). Therefore, it is presumable that Eu3+ ions exchange La3+ ions when incorporating 

into Sr2LaF7 matrix. This assumption is supported by the shifting of diffraction peaks to higher 

Bragg angles, observable in Fig. 1(c). As well as this, the calculated unit cell parameters, presented 

in Table 2, exhibit a decreasing trend with the Eu3+ content increase, demonstrating successful 

doping. The crystallite size calculated from XRD data is around 20 nm for all samples. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/advance-article/doi/10.1093/ptep/ptag026/8472646 by guest on 12 February 2026



                            

O
R

IG
IN

A
L

 U
N

E
D

IT
E

D
 M

A
N

U
S

C
R

IP
T Transmission electron micrographs of the representative SLF_50Eu powder, taken with different 

magnifications, are displayed in Fig. 1(d). The microstructure reveals porous, loosely packed 

agglomerates consisting of nanoparticles with quasi-spherical shapes, a morphology characteristic 

of fluoride-based nanophosphors obtained through wet-chemical synthesis methods [35]. The 

particle size histogram fitted with a log-normal distribution, based on more than 130 measured 

particles, is presented in Fig. 1(e)). The particles exhibit a size distribution in 20-80 nm range, with 

the average particle size estimated to be 33±2 nm. Considering the crystallite size from Table 2, 

we can say that each particle is composed of a few crystallites. 

The reflected electron energy loss (REELS) spectrum of the non-doped SLF nanopowder is shown 

in Fig. 1(f). By plotting the electron energy loss spectrum and identifying the onset of inelastic 

scattering – where intensity begins to rise from the zero-loss peak – the electronic band gap is 

extracted. In this analysis, that onset corresponds to an energy of 8.8 eV. In the present approach, 

the background intensity was not explicitly subtracted; instead, the signal onset was estimated from 

the visible rise above the background slope. Since the tail of the zero-loss peak and the scattering 

background affect the pre-edge region, this procedure inherently introduces some uncertainty in 

the determination of the band gap value. Based on repeated measurements and the possible 

variation in the fitted onset position, we estimated that the uncertainty associated with this method 

does not exceed 0.2 eV. Large bang gap is favorable for phosphor materials in terms of preventing 

non-radiative losses, supporting efficient dopant emission and improving thermal and chemical 

stability. 
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Fig. 1 (a) The XRD patterns of the Sr2LaF7 nanophosphors doped with various concentrations of Eu3+ ions 

(5, 10, 15, 20, 40, 50, 60, and 80 mol%), dotted line marking the diffraction peaks from (1 1 1) and (2 0 0) 

planes; (b) three-dimensional schematic presentation of the cubic Sr2LaF7 structure; (c) diffraction data in 

the 2θ range of (25-32)°, noting the Bragg angle shift of the (1 1 1) and (2 0 0) peaks; (d) TEM images of 

the representative SLF_50Eu nanophosphor under different magnifications; (e) particle size distribution 
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energy loss spectrum of the SLF nanopowder. The blue line represents the band gap energy. 

 

Table 2 Structural parameters of the SLF_𝑥Eu (𝑥 = 0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) nanophosphors. 

𝒙  

[mol%] 
0 5 10 15 20 40 50 60 80 

a=b=c 

(Å) 

5.8401(1

5) 
5.8369(3) 5.8416(6) 5.8355(6) 5.8313(7) 5.8166(5) 5.8048(6) 5.7983(10) 5.7792(13) 

CS (nm) 23.1(1) 23.9(7) 22.0(8) 24.8(3) 20.0(3) 21.9(2) 16.6(1) 21.7(4) 22.4(4) 

Strain 0.156(3) 0.209(9) 0.205(13) 0.260(3) 0.210(2) 0.360(3) 0.26 (3) 0.390 (3) 0.420 (3) 

Rwp 10.08 9.74 10.52 9.21 9.42 8.82 9.04% 7.56% 8.19% 

Rp 7.76 7.51 8.19 7.21 7.34 6.98 7.29% 6.07% 6.41% 

Re 9.37 9.20 9.54 8.52 8.88 8.27 7.57% 7.45% 7.13% 

GOF 1.0750 1.0579 1.1015 1.0809 1.0603 1.0661 1.1939 1.0146 1.1493 

Rwp—the weighted profile factor; Rp—the profile factor; Re—the expected weighted profile factor; GOF—the goodness of fit. 

 

 

3.2. Photoluminescence 

 

The photoluminescence excitation spectrum of the SLF_5Eu sample, recorded by monitoring 

emission at 591 nm, is presented in Fig. 2(a). It exhibits the trivalent europium intra-4f electronic 

transitions, that are noted in Fig. 2(a) according to literature [31]. 

Fig. 2(b) reveals the emission spectra of the SLF_𝑥Eu (𝑥 = 0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) 

nanopowders, obtained after a 393 nm excitation. In the wavelength region 500-575 nm, the 

transitions from the higher excited levels of Eu3+ are detected (inset in Fig. 2(a)). Dejneka et al.[36] 
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their intensity is typically more than order of magnitude less intense than the 5D0 emissions at 

room temperature. Our results are consistent with this, showing emissions at 510, 526, 535 and 

554 nm, that correspond to 5D2 → 7F3, 5D1 → 7F0, 5D1 → 7F1, and 5D1 → 7F2 transitions, 

respectively. However, their intensity is quenched at higher Eu³⁺ concentrations and become 

negligible at concentrations above 20 mol%. Apart from the higher energy emissions, the typical 

Eu3+ emission transitions around 591 nm (5D0 → 7F1), 613 nm (5D0 → 7F2), 649 nm (5D0 → 7F3) 

and 698 nm (5D0 → 7F4 transition) are observed [31,37]. The most intense 5D0 → 7F1 transition of 

a magnetic-dipole nature dominates the spectrum, as can be expected for cubic hosts with the 

activator ion located in centrosymmetric site. The 5D0 → 7F2 transition is a forced electric-dipole 

transition that is highly sensitive to changes in the local environment surrounding the Eu³⁺ ions. 

All samples show an unusually intense 5D0 → 7F4 emission peak near 700 nm, providing a 

beneficial spectral component that aligns with the deep-red region of the PAR spectrum [38].  

Fig. 2(c) unveils the emission intensity−Eu3+ concentration dependence, from which is evident that 

the maximal intensity is reached at 𝑥 = 50 mol%, after which the concentration quenching occurs. 

The SLF_50Eu sample exhibits a remarkable enhancement in emission intensity, reaching 555% 

relative to the sample with 5 mol% Eu³⁺. Even at a high doping level of 80 mol%, the emission 

remains significantly enhanced, showing an intensity 370% greater than that of the lowest-doped 

sample. 

As Dexter and Schulman theory predicts, concentration quenching in inorganic phosphors occurs 

when energy is transferred from one activator ion to another, typically continuing this process until 

the energy is ultimately lost to a non-radiative sink within the lattice [39]. The mechanism of 

concentration quenching can be anticipated by determining the critical distance for energy transfer 
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T between ions, denoted as 𝑅஼. The average interaction distance between ions can be approximately 

calculated using the following equation by Blasse [40]: 

 

𝑅஼ ≈ ൬
6𝑉

𝜋𝑁𝑥஼
൰

ଵ/ଷ

. (1) 

 

In this expression 𝑉 [Åଷ] represents unit cell volume, 𝑁 stands for the number of lattice sites per 

unit cell that can be occupied by activator ions, while 𝑥஼   is the critical concentration of activator 

ions, after which the quenching occurs. In our case, 𝑥஼ = 0.5, for Fm3തm fluorite-type structure 

𝑁 = 4, and from XRD data we calculated 𝑉 = 195.6 Åଷ. If 𝑅஼ > 5 Å, the multipolar interaction 

determines concentration quenching, otherwise, the exchange interaction is responsible for it [39]. 

From Equation (1) we calculated 𝑅஼ = 5.72 Å, so we can conclude that in the case of the SLF_𝑥Eu 

sample series the concentration quenching results from the multipolar interaction. The type of 

multipolar interaction can be analyzed further using the Van-Uitert equation [41]: 

 

𝐼(𝑥)

𝑥
= 𝐾 ∙ ൤1 + 𝛽 ∙ 𝑥

ொ
ଷ ൨

ିଵ

, (2) 

 

where 𝑥 stands for doping concentration, and 𝑥 ≥ 𝑥஼; 𝐼(𝑥) is the emission intensity for the given 

concentration, while 𝐾 and 𝛽 represent constants. In the case of multipolar interactions, the energy 

transfer probability is proportional to 𝑅ିொ, where 𝑄 = 6, 8 or 10, corresponds to dipole–dipole, 

dipole–quadrupole, and quadrupole–quadrupole interactions, respectively. With the approximation 

𝛽 ∙ 𝑥
ೂ

య ≫ 1, and by linearizing the Eq.(2), the following relation is obtained: 
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𝐼(𝑥)

𝑥
቉ = 𝑙𝑜𝑔𝐾ଵ −

𝑄

3
log 𝑥 , 𝐾ଵ = 𝐾 ∙ 𝛽ିଵ. (3) 

 

The inset in Fig. 2(c) displays the function 𝑙𝑜𝑔 (𝐼/𝑥) −log 𝑥, for 𝑥 ≥ 𝑥஼. The parameter Q was 

calculated from the slope of the linear fit. In this case, 𝑄 =  5.4 ±  0.87, which is closest to the 

theoretical value of 6, indicating that dipole-dipole interactions are the dominant mechanism 

responsible for concentration quenching in the SLF_𝑥Eu sample set. 

Normalized time decay curves of the SLF_𝑥Eu nanopowders are depicted in Fig. 2(d). The decay 

profiles were evaluated by applying a single-exponential fitting to the experimental data, thereby 

determining the corresponding lifetimes (𝜏) according to equation: 

 

𝐼(𝑡) = 𝐼଴𝑒ି
௧
ఛ , (4) 

 

where 𝐼(𝑡) represents the emission intensity at time 𝑡, 𝐼଴ is the corresponding emission intensity 

at time 𝑡 = 0 (ideally, 𝐼଴ = 1 for normalized intensity), while 𝜏 represents the excited state 

lifetime. All the excited 5D0 state lifetimes are very long and decrease within (14.9-8.3) ms range 

as the Eu3+ content increases (see inset in Fig. 2(d)). Compared to previously published research 

on Eu3+-activated Sr2LaF7 nanophosphors [31], our measured lifetime values are approximately 

twice as high, aligning closely with those observed in similar fluoride-based matrices [26]. 

The optimized SLF_50Eu sample exhibits a quantum efficiency of 52.73%, indicating efficient 

radiative emission. This value is regarded as substantial, particularly for Eu³⁺-doped fluoride hosts 

[42–44], given that red-emitting Eu³⁺ transitions often experience non-radiative relaxation 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/advance-article/doi/10.1093/ptep/ptag026/8472646 by guest on 12 February 2026



                            

O
R

IG
IN

A
L

 U
N

E
D

IT
E

D
 M

A
N

U
S

C
R

IP
T pathways. This result highlights the excellent luminescent performance and favorable energy 

transfer dynamics within the SLF host lattice. 

 

 

 

Fig. 2 (a) The excitation spectrum of SLF_5Eu, recorded under a 591 nm emission; (b) the emission spectra 

of SLF_𝑥Eu (𝑥 = 0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) nanophosphors. The inset shows 500-575 nm 

spectral range. (c) The intensity-concentration dependence of the SLF_𝑥Eu nanopowders. The inset: 

𝑙𝑜𝑔(𝐼/𝑥) vs. 𝑙𝑜𝑔𝑥  plot, for 𝑥 ≥ 𝑥஼. The measurement uncertainty is comparable to, or smaller than the 

symbol size. (d) The excited state decay curves for different Eu3+ concentrations. The inset: lifetime values 

vs. Eu3+ concentration. 
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T 3.3. CIE coordinates, emission stability and LED fabrication 

 

For horticultural LED applications, selecting the appropriate light color and ensuring the thermal 

stability of photoluminescence emission are critical requirements.  

To evaluate the color characteristics of the synthesized nanophosphors, the CIE chromaticity 

coordinates were calculated from the emission spectra shown in Fig. 2(b). The CIE (Commission 

Internationale de l'Éclairage) 1931 chromaticity diagram provides a standardized method for 

representing and describing colors using the (x, y) coordinates, which indicate the chromaticity of 

a light source independent of its brightness. Additionally, the color purity of the emitted light was 

evaluated to assess the degree of color saturation, where a higher purity value indicates a more 

vivid and saturated color. Table 3 features the colorimetric parameters of the examined 

nanopowders, derived from the corresponding emission spectra, while Fig. 3(a) illustrates the 

position in the CIE diagram. The (x, y) chromaticity coordinates of all samples fall within the red 

region of the diagram, showing a gradual shift from orange-red to deep red as the Eu³⁺ 

concentration increases. The color purity is exceptional, reaching 100% pure color after 

𝑥 = 20 mol%. 

 

Table 3 Colorimetric parameters of SLF_𝑥Eu (𝑥 = 5, 10, 15, 20, 40, 50, 60, 80 mol%) nanophosphors 

X [mol%] 5 10 15 20 40 50 60 80 

x 0.550 0.576 0.594 0.599 0.604 0.607 0.607 0.607 

y 0.441 0.419 0.404 0.400 0.395 0.392 0.393 0.392 

Color 

purity[%] 
92.44 98.32 98.95 99.67 100 100 100 100 
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measurements were performed over the range of 25°C to 200°C, in 25°C increments, using the 

SLF_50Eu sample pressed into a pellet. While some LED manufacturers consider 100°C as the 

typical maximum operating temperature for LEDs [45,46], literature reports often indicate 

temperature stability up to 150°C [47,48]. As shown in Fig. 3(a), the SLF_50Eu sample exhibits 

remarkable thermal stability, retaining almost 100% of its room-temperature integrated emission 

intensity up to 100°C and still maintaining 97% of its initial emission intensity at 200°C. Moreover, 

the inset in Fig. 3(b) demonstrates considerable temporal stability of this nanophosphor. 

 

 

 

Fig. 3 (a) Position in the CIE color diagram of the SLF_𝑥Eu (𝑥 = 0, 5, 10, 15, 20, 40, 50, 60, 80 mol%) 

nanophosphors. The inset: synthesized nanopowders under an UV lamp lighting; (b) Thermal stability of 

photoluminescence emission of the SLF_50Eu sample. The inset shows temporal stability of the integrated 

emission intensity. 

 

To evaluate the practical applicability of the phosphors in LED technology, the powder sample 

with the highest emission intensity, SLF_50Eu, was combined with a ceramic binder and coated 
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T onto a 395 nm near-UV LED chip. As shown in Fig. 4(a) , the fabricated LED device emits a strong 

red light when powered. The corresponding emission spectrum, presented in Fig. 4(b) clearly 

displays the characteristic europium emission transitions in the red and deep-red spectral regions. 

The dashed line in Fig. 4(b) corresponds to the emission spectrum of the 395 nm chip. The two 

peaks observed near 400 nm arise from the chip’s emission and the Eu3+ absorption transition 

7F0 → 5L6 at 393 nm (see excitation spectrum in Fig. 2(a)). The strong overlap between these 

transitions enables efficient energy absorption by Eu3+ ions, producing the characteristic doublet 

around 400 nm. 

 

 

 

Fig. 4 (a) LED device, fabricated from a SLF_50Eu nanophosphor with a binder on a 395 nm-emitting 

semiconductor chip, displaying strong red light; (b) the emission spectrum of the as-prepared LED device. 

The dashed line represents the emission spectrum of a 395 nm chip. The dip at 393 nm corresponds to the 

7F0 → 5L6 absorption transition of Eu3+. 
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4. Conclusion 

 

In this research, a series of Sr2LaF7 nanoparticles was synthesized via hydrothermal method and 

doped with various concentrations of Eu3+ ions. We conducted a comprehensive analysis of their 

structural, morphological and photoluminescent properties, and demonstrated: 

 The Sr2LaF7 host material possesses a wide band gap of 8.8 eV, well-suited for activation 

with different lanthanide ions. 

 The emission spectra upon a 393 nm excitation reveal intense orange/red and deep-red 

emission of Eu3+. 

 The most dominant 5D0 → 7F1 transition typical for centrosymmetric environments is 

accompanied by an unusually intense 5D0 → 7F4 transition. 

 The emission intensity increases with increasing Eu3+ concentration, peaking at 

𝑥 = 50 mol%, beyond which concentration quenching is observed—attributed to a dipole–

dipole interaction mechanism. 

 The excited-state lifetimes decrease from ~15 ms for 𝑥 = 5 to ~8 ms for 𝑥 = 80 mol%.  

 The optimized SLF_50Eu sample exhibits a remarkable 555% enhancement in integrated 

emission intensity compared to the lowest concentration, while even at 80 mol% of Eu3+, 

the emission remains enhanced by 370%.  

 The quantum efficiency of the optimized sample is 52.73%. 

 The nanophosphors demonstrate excellent thermal stability, retaining 100% of their room-

temperature emission at 100°C and 97% at 200°C. 
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materials for LED-based applications, particularly in indoor plant growth lighting. Future work 

will focus on evaluating their performance in integrated LED systems for plant growth lighting. 
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